
Dataplicity Lomond Documentation
Release 0.1.7

Will McGugan

May 26, 2017

Contents:

1 Sponsor 3

2 Authors 5

3 Guide 7
3.1 Introduction . 7
3.2 Installing . 7
3.3 Basic Usage . 7
3.4 Events . 8
3.5 Closing the Websocket . 8
3.6 Pings and Pongs . 9
3.7 Polling . 9
3.8 WebSockets and Threading . 9
3.9 Persistent Connections . 10

4 Code Documentation 11
4.1 Exceptions . 11
4.2 Events . 12
4.3 Persist . 13
4.4 Response . 13
4.5 WebSocket . 14

5 Indices and tables 17

Python Module Index 19

i

ii

Dataplicity Lomond Documentation, Release 0.1.7

Lomond is a Pythonic Websockets client library designed for reliability and ease of use.

Contents: 1

Dataplicity Lomond Documentation, Release 0.1.7

2 Contents:

CHAPTER 1

Sponsor

Lomond was sponsored by Dataplicity – Control your Raspberry Pi from anywhere!

3

https://www.dataplicity.com/

Dataplicity Lomond Documentation, Release 0.1.7

4 Chapter 1. Sponsor

CHAPTER 2

Authors

• Will McGugan (willmcgugan+lomond@gmail.com)

• Mateusz Mikołajczyk

5

mailto:willmcgugan+lomond@gmail.com

Dataplicity Lomond Documentation, Release 0.1.7

6 Chapter 2. Authors

CHAPTER 3

Guide

Introduction

Lomond is a websocket client library designed to make adding websocket support to your application as tranquil as
the Scottish Loch it was named after.

Installing

You can install Lomond with pip as follows:

pip install lomond

Or to upgrade to the most recent version:

pip install lomond --upgrade

Alternatively, if you would like to install from source, check out the code from Github.

You may wish to install wsaccel, which is a C module containing optimizations for some websocket operations.
Lomond will use it if available:

pip install wsaccel

Basic Usage

To connect to a websocket server, first construct a WebSocket object, with a ws:// or wss:// URL. Here is an example:

from lomond.websocket import WebSocket
ws = WebSocket('wss://echo.websocket.org')

7

https://en.wikipedia.org/wiki/Loch_Lomond
https://github.com/wildfoundry/dataplicity-lomond

Dataplicity Lomond Documentation, Release 0.1.7

No socket connection is made by a freshly constructed WebSocket object. To connect and interact with a websocket
server, iterate over the WebSocket instance, which will yield a number of Event objects. Here’s an example:

for event in ws:
print(event)

Here is an example of the output you might get from the above code:

Connecting(url='wss://echo.websocket.org')
Connected(url='wss://echo.websocket.org')
Ready(<response HTTP/1.1 101 Web Socket Protocol Handshake>, protocol=None,
→˓extensions=set([]))

The Ready event indicates a successful connection to a websocket server. You may now use the send_text() and
send_binary() methods to send data to the server.

When you receive data from the server, a Text or Binary event will be generated.

Iterating over the WebSocket instance in this way calls connect() with default parameters, i.e. it is equivalent to
the following:

for event in ws.connect():
print(event)

You may want to call connect manually to change the default behavior.

Events

Events inform your application when data is received from the server or when the websocket state changes.

All events are derived from Event and will contain at least 2 attributes; received_time is the epoch time the event was
received, and name is the name of the event. Some events have additional attributes with more information. See the
Events for details.

When handling events, you can either check the type with isinstance or by looking at the name attribute.

For example, the following two lines are equivalent:

if isinstance(event, events.Ready):

or:

if event.name == "ready":

Note: The isinstance method is possibly uglier, but has the advantage that you are less likely to introduce a bug with
a typo in the event name.

If an event is generated that you aren’t familiar with, then you should simply ignore it. This is important for backwards
compatibility; future versions of Lomond may introduce new event types.

Closing the Websocket

To close a websocket, call the close() method to initiate a websocket close handshake. You may call this method
from within the websocket loop, or from another thread.

8 Chapter 3. Guide

Dataplicity Lomond Documentation, Release 0.1.7

When a WebSocket wishes to close, it sends a close packet to the server. The server will respond by sending a close
packet of its own. Only when this echoed close packet is received will the WebSocket close the underlaying socket.
This allows both ends of the connection to finish what they are doing, without losing data.

Note: When you call the close() method, you will no longer be able to send data, but you may still receive packets
from the server until the close has completed.

When the websocket has been closed, you will receive a Closed event, followed by a Disconnected event, and
the event loop will exit.

Pings and Pongs

Both the server and client may send ‘ping’ packets, which should be responded to with a ‘pong’ packet. This allows
both ends of the connection to know if the other end is really listening.

By default, Lomond will send pings packets every 30 seconds. If you wish to change this rate or disable ping packets
entirely, you may use the connect() method.

Here’s how you would disable pings:

websocket = Websocket('wss://ws.example.org')
for event in WebSocket.connect(ping_rate=0):

on_event(event)

Lomond will also automatically respond to ping requests. Since this is a requirement of the websocket specification,
you probably don’t want to change this behaviour. But it may be disabled with the auto_pong flag in connect().

Regardless of whether auto pong is enabled, a Pong event will be generated when Lomond receives a ping packet. If
auto pong is disabled, you should manually call send_pong() in response to a ping, or the server may disconnect
you.

Polling

Lomond checks for automatic pings and performs other housekeeping tasks at a regular intervals. This polling is
exposed as Poll events. Your application can use these events to do any processing that needs to be invoked at
regular intervals.

The default poll rate of 5 seconds is granular enough for Lomond’s polling needs, while having negligible impact on
CPU. If your application needs to process at a faster rate, you may set the poll parameter of connect().

Note: If your application needs to be more realtime than polling once a second, you should probably use threads in
tandem with the event loop.

WebSockets and Threading

WebSocket objects are thread safe, but Lomond does not need to launch any threads to run a websocket. For many
applications, responding to data and poll events is all you will need. However, if your application needs to do more
than communicate with a websocket server, you may want to run a websocket in a thread of its own.

3.6. Pings and Pongs 9

Dataplicity Lomond Documentation, Release 0.1.7

Persistent Connections

Lomond supports a simple mechanism for persistent connections. Essentially, you can tell Lomond to continually retry
a websocket connection if it is dropped for any reason. This allows an application to maintain a websocket connection
even if there are any outages in connectivity.

To run a persistent connection, wrap a websocket with persist(). Here is an example:

from lomond.persist import persist
websocket = WebSocket('wss://ws.example.org')
for event in persist(websocket):

handle event

You will receive events as normal with the above loop.

If the connection is dropped for any reason, you will receive Disconnected as usual, followed by Connecting
when Lomond retries the connection. Lomond will keep retrying the connection until it is successful, and a Ready
event is generated.

The persist() function implements exponential backoff. If the websocket object fails to connect, it will wait for
a random period between zero seconds and an upper limit. Every time the connection fails, it will double the upper
limit until it connects, or a maximum delay is reached.

The exponential backoff prevents a client from hammering a server that may already be overloaded. It also prevents
the client from being stuck in a cpu intensive spin loop.

10 Chapter 3. Guide

CHAPTER 4

Code Documentation

Exceptions

Lomond takes great care not to leak any socket or system related exceptions. During normal usage of WebSocket
objects you can expect only the following exception hierarchy to be thrown.

exception lomond.errors.CriticalProtocolError(msg, *args, **kwargs)
Critical protocol error. An egregious error in the protocol resulting in an immediate disconnect.

exception lomond.errors.FrameBuildError(msg, *args, **kwargs)
Raised when trying to build an invalid websocket frame.

exception lomond.errors.HandshakeError(msg, *args, **kwargs)
Raised when the server doesn’t respond correctly to the websocket handshake.

exception lomond.errors.PayloadTooLarge(msg, *args, **kwargs)
The payload length field is too large.

Websocket messages have a maximum payload of 2**63 bytes. In practice it may be impossible to generate
such a packet for real, but its feasible a corrupt packet header could make it appear that such a packet was being
sent.

exception lomond.errors.ProtocolError(msg, *args, **kwargs)
Raised in response to a protocol violation.

exception lomond.errors.TransportFail(msg, *args, **kwargs)
The transport (socket) failed when sending.

Likely indicating connectivity issues.

exception lomond.errors.WebSocketClosed(msg, *args, **kwargs)
Raised when attempting to send over a closed websocket.

exception lomond.errors.WebSocketClosing(msg, *args, **kwargs)
Raised when attempting to send over a closing websocket.

exception lomond.errors.WebSocketError(msg, *args, **kwargs)
Base exception.

11

Dataplicity Lomond Documentation, Release 0.1.7

exception lomond.errors.WebSocketUnavailable(msg, *args, **kwargs)
The websocket can not be used.

Events

class lomond.events.BackOff(delay)
Generated when a persistent connection has to wait before re- attempting a connection.

Parameters delay (float) – The delay (in seconds) before Lomond will re- attempt to connect.

class lomond.events.Binary(data)
Generated when Lomond receives a binary message from the server.

Parameters data (bytes) – The binary payload.

class lomond.events.Closed(code, reason)
Generated when the websocket was closed. The websocket may no longer send packets after this event has been
received.

Parameters

• code – The closed code returned from the server.

• reason (str) – An optional description why the websocket was closed, as returned from
the server.

class lomond.events.ConnectFail(reason)
Generate when Lomond was unable to connect to a Websocket server.

Parameters reason (str) – A short description of the reason for the failure.

class lomond.events.Connected(url)
Generated when Lomond has connected to a server but not yet negotiated the websocket upgrade.

class lomond.events.Connecting(url)
Generated prior to establishing a websocket connection to a server.

Parameters url – The websocket URL the websocket is connecting to.

class lomond.events.Disconnected(reason=u’closed’, graceful=False)
Generated when a websocket connection has been dropped.

Parameters

• reason (str) – A description of why the websocket was closed.

• graceful (bool) – Flag indicating if the connection was dropped gracefully (True), or
disconnected due to a socket failure (False).

class lomond.events.Event
Base class for a websocket ‘event’.

class lomond.events.Ping(data)
Generated when Lomond received a ping packet from the server.

Parameters data (bytes) – Ping payload data.

class lomond.events.Poll
A generated poll event.

class lomond.events.Pong(data)
Generated when Lomond receives a pong packet from the server.

12 Chapter 4. Code Documentation

Dataplicity Lomond Documentation, Release 0.1.7

Parameters data (bytes) – The pong payload data.

class lomond.events.Ready(response, protocol, extensions)
Generated when Lomond has connected to the server, and successfully negotiated the websocket upgrade.

Parameters

• response – A Response object.

• protocol (str) – A websocket protocol or None if no protocol was supplied.

• extensions (set) – A set of negotiated websocket extensions. Currently Lomond does
not support any extensions, so this will be an empty set.

class lomond.events.Rejected(response, reason)
Server rejected WS connection.

class lomond.events.Text(text)
Generated when Lomond receives a text message from the server.

Parameters text (str) – The text payload.

class lomond.events.UnknownMessage(message)
An application message was received, with an unknown opcode.

Persist

Maintains a persistent websocket connection.

lomond.persist.persist(websocket, poll=5, min_wait=5, max_wait=30, ping_rate=30,
exit_event=None)

Run a websocket, with a retry mechanism and exponential back-off.

Parameters

• websocket – A Websocket instance.

• poll (float) – The websocket poll rate, in seconds.

• min_wait (float) – The minimum time to wait between reconnect attempts (seconds).

• max_wait (float) – The maximum time to wait between reconnect attempts (seconds).

• ping_rate (float) – Delay between pings (seconds), or 0 for no auto ping.

• exit_event – A threading event object, which can be used to exit the persist loop if it is
set. Set to None to use an internal event object.

lomond.persist.random()→ x in the interval [0, 1).

Response

A simple abstraction for an HTTP response.

A response object is supplied in the Ready event.

class lomond.response.Response(header_data)
A HTTP response.

Parameters header_data (bytes) – Raw response.

4.3. Persist 13

Dataplicity Lomond Documentation, Release 0.1.7

get(name, default=None)
Get a header.

Parameters

• name (bytes) – Name of the header to retrieve.

• default – Default value if header is not present.

Return type bytes

get_list(name)
Extract a list from a header.

Parameters name (bytes) – Name of the header to retrieve.

Return type list

Returns A list of strings in the header.

WebSocket

Abstract websocket functionality.

class lomond.websocket.WebSocket(url, protocols=None, agent=None)
IO independent websocket functionality.

Parameters url (str) – A websocket URL, must have a ws:// or wss:// protocol.

Params list protocols A list of supported protocols (defaults to no protocols).

Params str agent A user agent string to be sent in the header. The default uses the value
USER_AGENT defined in lomond.constants.

build_request()
Get the websocket request (in bytes).

This method is called from the session, and should not be invoked explicitly.

close(code=None, reason=None)
Close the websocket.

Parameters

• code (int) – A closing code, which should probably be one of the enumerations in
lomond.status.Status or a valid value as specified in https://tools.ietf.org/html/
rfc6455#section-7.4

• reason (str) – A short descriptive reason why the websocket is closing. This value is
intended for the remote end to help in debugging.

Note: Closing the websocket won’t exit the main loop immediately; it will put the websocket in to
a closing state while it waits for the server to echo back a close packet. No data may be sent by the
application when the websocket is closing.

connect(session_class=<class ‘lomond.session.WebsocketSession’>, poll=5.0, ping_rate=30.0,
auto_pong=True)

Connect the websocket to a session.

Parameters

14 Chapter 4. Code Documentation

https://tools.ietf.org/html/rfc6455#section-7.4
https://tools.ietf.org/html/rfc6455#section-7.4

Dataplicity Lomond Documentation, Release 0.1.7

• session_class – An object to manage the session. This object is an extension mech-
anism that will allow the WebSocket to be driven by different back-ends. For now, treat it
as an implementation detail and leave it as the default.

• poll (float) – Rate (in seconds) that poll events should be generated.

• ping_rate (float) – Rate that ping packets should be sent. Set to 0 to disable auto
pings.

• auto_pong (bool) – Enable (default) automatic response to ping events.

Returns An iterable of Event instances.

feed(data)
Feed with data from the socket, and yield any events.

Parameters data (bytes) – data received over a socket.

is_closed
Flag that indicates if the websocket is closed.

is_closing
Boolean that indicates if the websocket is in a closing state. No further messages may be sent when a
websocket is closing.

is_secure
Boolean that indicates if the websocket is over ssl (i.e. the wss protocol).

on_disconnect()
Called on disconnect.

on_response(response)
Called when the HTTP response has been received.

reset()
Reset the state.

send_binary(data)
Send a binary frame.

Parameters data (bytes) – Binary data to send.

Raises TypeError – If data is not bytes.

send_ping(data=’‘)
Send a ping packet.

Parameters data (bytes) – Data to send in the ping message (must be <= 125 bytes).

Raises

• TypeError – If data is not bytes.

• ValueError – If data is > 125 bytes.

send_pong(data)
Send a pong packet.

Parameters data (bytes) – Data to send in the ping message (must be <= 125 bytes).

A pong may be sent in response to a ping, or unsolicited to keep the connection alive.

Raises

• TypeError – If data is not bytes.

• ValueError – If data is > 125 bytes.

4.5. WebSocket 15

Dataplicity Lomond Documentation, Release 0.1.7

send_text(text)
Send a text frame.

Parameters text (str) – Text to send.

Raises TypeError – If data is not str (or unicode on Py2).

16 Chapter 4. Code Documentation

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

17

Dataplicity Lomond Documentation, Release 0.1.7

18 Chapter 5. Indices and tables

Python Module Index

l
lomond.errors, 11
lomond.events, 12
lomond.persist, 13
lomond.response, 13
lomond.websocket, 14

19

Dataplicity Lomond Documentation, Release 0.1.7

20 Python Module Index

Index

B
BackOff (class in lomond.events), 12
Binary (class in lomond.events), 12
build_request() (lomond.websocket.WebSocket method),

14

C
close() (lomond.websocket.WebSocket method), 14
Closed (class in lomond.events), 12
connect() (lomond.websocket.WebSocket method), 14
Connected (class in lomond.events), 12
ConnectFail (class in lomond.events), 12
Connecting (class in lomond.events), 12
CriticalProtocolError, 11

D
Disconnected (class in lomond.events), 12

E
Event (class in lomond.events), 12

F
feed() (lomond.websocket.WebSocket method), 15
FrameBuildError, 11

G
get() (lomond.response.Response method), 13
get_list() (lomond.response.Response method), 14

H
HandshakeError, 11

I
is_closed (lomond.websocket.WebSocket attribute), 15
is_closing (lomond.websocket.WebSocket attribute), 15
is_secure (lomond.websocket.WebSocket attribute), 15

L
lomond.errors (module), 11

lomond.events (module), 12
lomond.persist (module), 13
lomond.response (module), 13
lomond.websocket (module), 14

O
on_disconnect() (lomond.websocket.WebSocket

method), 15
on_response() (lomond.websocket.WebSocket method),

15

P
PayloadTooLarge, 11
persist() (in module lomond.persist), 13
Ping (class in lomond.events), 12
Poll (class in lomond.events), 12
Pong (class in lomond.events), 12
ProtocolError, 11

R
random() (in module lomond.persist), 13
Ready (class in lomond.events), 13
Rejected (class in lomond.events), 13
reset() (lomond.websocket.WebSocket method), 15
Response (class in lomond.response), 13

S
send_binary() (lomond.websocket.WebSocket method),

15
send_ping() (lomond.websocket.WebSocket method), 15
send_pong() (lomond.websocket.WebSocket method), 15
send_text() (lomond.websocket.WebSocket method), 15

T
Text (class in lomond.events), 13
TransportFail, 11

U
UnknownMessage (class in lomond.events), 13

21

Dataplicity Lomond Documentation, Release 0.1.7

W
WebSocket (class in lomond.websocket), 14
WebSocketClosed, 11
WebSocketClosing, 11
WebSocketError, 11
WebSocketUnavailable, 11

22 Index

	Sponsor
	Authors
	Guide
	Introduction
	Installing
	Basic Usage
	Events
	Closing the Websocket
	Pings and Pongs
	Polling
	WebSockets and Threading
	Persistent Connections

	Code Documentation
	Exceptions
	Events
	Persist
	Response
	WebSocket

	Indices and tables
	Python Module Index

